Lumbar and cervical erector spinae fatigue elicit compensatory postural responses to assist in maintaining head stability during walking.
File version
Author(s)
Morrison, Steven
Barrett, Rod S
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
The purpose of this study was to examine how inducing fatigue of the 1) lumbar erector spinae and 2) cervical erector spinae (CES) muscles affected the ability to maintain head stability during walking. Triaxial accelerometers were attached to the head, upper trunk, and lower trunk to measure accelerations in the vertical, anterior-posterior, and mediolateral directions during walking. Using three accelerometers enabled two adjacent upper body segments to be defined: the neck segment and trunk segment. A transfer function was applied to root mean square acceleration, peak power, and harmonic data derived from spectral analysis of accelerations to quantify segmental gain. The structure of upper body accelerations were examined using measures of signal regularity and smoothness. The main findings were that head stability was only affected in the anterior-posterior direction, as accelerations of the head were less regular following CES fatigue. Furthermore, following CES fatigue, the central nervous system altered the attenuation properties of the trunk segment in the anterior-posterior direction, presumably to enhance head stability. Following lumbar erector spinae fatigue, the trunk segment had greater gain and increased regularity and smoothness of accelerations in the mediolateral direction. Overall, the results of this study suggest that erector spinae fatigue differentially altered segmental attenuation during walking, according to the level of the upper body that was fatigued and the direction that oscillations were attenuated. A compensatory postural response was not only elicited in the sagittal plane, where greater segmental attenuation occurred, but also in the frontal plane, where greater segmental gain occurred.
Journal Title
Journal of Applied Physiology
Conference Title
Book Title
Edition
Volume
101
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Biological sciences
Biomedical and clinical sciences
Health sciences