Straight road edge detection from high-resolution remote sensing images based on the ridgelet transform with the revised parallel-beam Radon transform

Loading...
Thumbnail Image
File version
Author(s)
Li, Xiaofeng
Zhang, Shuqing
Pan, Xin
Dale, Pat
Cropp, Roger
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2010
Size

972344 bytes

File type(s)

application/pdf

Location
License
Abstract

Roads are important basic geographical phenomena and the automatic recogni- tion and extraction of road features from remote sensing images has many applica- tions. However, automated road extraction from high-resolution remote sensing imagery is problematic. In recent years, many approaches have been explored for automatic road extraction, particularly involving road edge detection. Traditional edge detection operators such as the Canny or the Sobel operator are used frequently but there are serious problems of over- or underdetection, and time- consuming and complicated post-processing work is often required. In this paper, a new revised parallel-beam Radon transform (RPRT) approach is proposed. The traditional PRT can have problems with step values, resulting in false edge detec- tion. To overcome these problems we introduced the RPRT, using the harmonic average of the pixel value in every strip of the Radon slice. An algorithm suitable for straight edge detection of roads in high-resolution remote sensing imagery was designed based on the ridgelet transform with the RPRT. The experimental results show that our algorithm can detect straight road edges efficiently and accurately, and avoid cumbersome and complicated post-processing work.

Journal Title

International Journal of Remote Sensing

Conference Title
Book Title
Edition
Volume

31

Issue

19

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2010 Routledge. This is an electronic version of an article published in International Journal of Remote Sensing, Vol. 31(19), pp. 5041-5059. International Journal of Remote Sensing is available online at: http://www.informaworld.com with the open URL of your article.

Item Access Status
Note
Access the data
Related item(s)
Subject

Physical geography and environmental geoscience

Geomatic engineering

Photogrammetry and remote sensing

Persistent link to this record
Citation
Collections