Probing the pharmacokinetics of cucurbit[7, 8 and 10]uril: And a dinuclear ruthenium antimicrobial complex encapsulated in cucurbit[10]uril
File version
Version of Record (VoR)
Author(s)
Gorle, Anil K
Ranson, Marie
Vine, Kara L
Kinobe, Robert
Feterl, Marshall
Warner, Jeffrey M
Keene, F Richard
Collins, J Grant
Day, Anthony I
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
The relatively non-toxic family of cucurbit[n]uril, Q[n], have shown considerable potential in vitro as drug delivery agents, with only a few examples of pharmacokinetic (PK) studies for drug⊂Q[n]. Drug-free Q[n] PK studies are the next step in determining the pharmacological applicability in their drug delivery potential. The results for the first PK and bio-distribution of drug-free 14C-Q[7] are described for administration via intravenous (i.v.) and intraperitoneal (i.p.) dosing. A study of oral administration of drug-free 14C-Q[8] has also been undertaken to determine the time course for the gastrointestinal tract (GIT), absorption and subsequent bio-distribution. Q[10], a potential drug carrier for larger drugs, was evaluated for its effect on the PK profile of a dinuclear ruthenium complex (Rubb12), a potential antimicrobial agent. The Rubb12⊂Q[10] complex and free Rubb12 were administered by i.v. to determine differences in Rubb12 plasma concentrations and organ accumulation. Interestingly, the PK profiles and bio-distribution observed for Q[7] showed similarities to those of Rubb12⊂Q[10]. Drug-free Q[7] has a relatively fast plasma clearance and a generally low organ accumulation except for the kidneys. Drug-free Q[8] showed a low absorption from the GIT into the blood stream but the small percentage absorbed reflected the organ accumulation of Q[7]. These results provide a better understanding of the probable PK profile and bio-distribution for a drug⊂Q[n] through the influence of the drug delivery vehicle and the positive clearance of drug-free Q[n] via the kidneys supports its potential value in future drug delivery applications.
Journal Title
Organic and Biomolecular Chemistry
Conference Title
Book Title
Edition
Volume
15
Issue
19
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© The Author(s) 2017. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) License, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Item Access Status
Note
Access the data
Related item(s)
Subject
Medicinal and biomolecular chemistry
Medicinal and biomolecular chemistry not elsewhere classified
Organic chemistry