Network-Based Output Tracking Control for a Class of T-S Fuzzy Systems That Can Not Be Stabilized by Nondelayed Output Feedback Controllers
File version
Author(s)
Han, QL
Jia, X
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
This paper investigates network-based output tracking control for a T-S fuzzy system that can not be stabilized by a nondelayed fuzzy static output feedback controller, but can be stabilized by a delayed fuzzy static output feedback controller. By intentionally introducing a communication network that produces proper network-induced delays in the feedback control loop, a stable and satisfactory tracking control can be ensured for the T-S fuzzy system. Due to the presence of network-induced delays, the fuzzy system and the fuzzy tracking controller operate in an asynchronous way. Taking the asynchronous operation and network-induced delays into consideration, the network-based tracking control system is modeled as an asynchronous T-S fuzzy system with an interval time-varying delay. A new delaydependent criterion for L2-gain tracking performance is derived by using the deviation bounds of asynchronous normalized membership functions and a complete Lyapunov-Krasovskii functional. Applying a particle swarm optimization technique with the feasibility of the derived criterion, a novel design algorithm is presented to determine the minimum L2-gain tracking performance and control gains simultaneously. The effectiveness of the proposed method is illustrated by performing network-based output tracking control of a Duffing-Van der Pol's oscillator.
Journal Title
IEEE Transactions on Cybernetics
Conference Title
Book Title
Edition
Volume
45
Issue
8
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Applied mathematics
Engineering design