Distinct Early Molecular Responses to Mutations Causing vLINCL and JNCL Presage ATP Synthase Subunit C Accumulation in Cerebellar Cells
File version
Author(s)
F. Staropoli, John
Biswas, Sunita
A. Espinola, Janice
E. MacDonald, Marcy
Lee, Jong-Min
L. Cotman, Susan
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
4901010 bytes
File type(s)
application/pdf
Location
Abstract
Variant late-infantile neuronal ceroid lipofuscinosis (vLINCL), caused by CLN6 mutation, and juvenile neuronal ceroid lipofuscinosis (JNCL), caused by CLN3 mutation, share clinical and pathological features, including lysosomal accumulation of mitochondrial ATP synthase subunit c, but the unrelated CLN6 and CLN3 genes may initiate disease via similar or distinct cellular processes. To gain insight into the NCL pathways, we established murine wild-type and CbCln6(nclf/nclf) cerebellar cells and compared them to wild-type and CbCln3(?ex7/8/?ex7/8) cerebellar cells. CbCln6(nclf/nclf) cells and CbCln3(?ex7/8/?ex7/8) cells both displayed abnormally elongated mitochondria and reduced cellular ATP levels and, as cells aged to confluence, exhibited accumulation of subunit c protein in Lamp 1-positive organelles. However, at sub-confluence, endoplasmic reticulum PDI immunostain was decreased only in CbCln6(nclf/nclf) cells, while fluid-phase endocytosis and LysoTrackerabeled vesicles were decreased in both CbCln6(nclf/nclf) and CbCln3(?ex7/8/?ex7/8) cells, though only the latter cells exhibited abnormal vesicle subcellular distribution. Furthermore, unbiased gene expression analyses revealed only partial overlap in the cerebellar cell genes and pathways that were altered by the Cln3(?ex7/8) and Cln6(nclf) mutations. Thus, these data support the hypothesis that CLN6 and CLN3 mutations trigger distinct processes that converge on a shared pathway, which is responsible for proper subunit c protein turnover and neuronal cell survival.
Journal Title
PloS One
Conference Title
Book Title
Edition
Volume
6
Issue
2
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2011 Cao et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License CCAL. (http://www.plos.org/journals/license.html)
Item Access Status
Note
Access the data
Related item(s)
Subject
Biochemistry and Cell Biology not elsewhere classified