Laboratory-based hyperspectral image analysis for predicting soil carbon, nitrogen and their isotopic compositions

No Thumbnail Available
File version
Author(s)
Tahmasbian, Iman
Xu, Zhihong
Boyd, Sue
Zhou, Jun
Esmaeilani, Roya
Che, Rongxiao
Bai, Shahla Hosseini
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2018
Size
File type(s)
Location
License
Abstract

The common methods of determining soil carbon (C), nitrogen (N) and their isotopic compositions (δ13C and δ15N) are expensive and time-consuming. Therefore, alternative low-cost and rapid methods are sought to address this issue. This study aimed to investigate the potential of hyperspectral image analysis to predict soil total carbon (TC), total nitrogen (TN), δ13C and δ15N. Hyperspectral images were captured from 96 ground soil samples using a laboratory-based visible to near-infrared (VNIR) hyperspectral camera in the spectral range of 400–1000 nm. Partial least squares regression (PLSR) models were developed to correlate the values of TC, TN, δ13C and δ15N, obtained from isotope ratio mass spectrometry method, with their spectral reflectance. The developed models provided acceptable predictions with high coefficient of determination (R2c) and low root mean square error (RMSEc) of calibration set for TC (R2c = 0.82; RMSEc = 1.08%), TN (R2c = 0.87; RMSEc = 0.02%), δ13C (R2c = 0.82; RMSEc = 0.27‰) and δ15N (R2c = 0.90; RMSEc = 0.29‰). The prediction abilities of the models were then evaluated using the spectra of an external test set (24 samples). The models provided excellent predictions with high R2t and ratio of performance to deviation (RPD) of test set for TC (R2t = 0.76; RPD = 2.02), TN (R2t = 0.86; RPD = 2.08), δ13C (R2t = 0.80; RPD = 2.00) and δ15N (R2t = 0.81; RPD = 1.94). The results indicated that the laboratory-based hyperspectral image analysis has the potential to predict soil TC, TN, δ13C and δ15N.

Journal Title
Geoderma
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Environmental sciences
Other environmental sciences not elsewhere classified
Biological sciences
Agricultural, veterinary and food sciences
Soil sciences
Persistent link to this record
Citation
Collections