Ram-pgk: Prediction of lysine phosphoglycerylation based on residue adjacency matrix
File version
Version of Record (VoR)
Author(s)
Sharma, A
Dehzangi, A
Tsunoda, T
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Background: Post-translational modification (PTM) is a biological process that is associated with the modification of proteome, which results in the alteration of normal cell biology and pathogenesis. There have been numerous PTM reports in recent years, out of which, lysine phosphoglycerylation has emerged as one of the recent developments. The traditional methods of identifying phosphoglycerylated residues, which are experimental procedures such as mass spectrometry, have shown to be time-consuming and cost-inefficient, despite the abundance of proteins being sequenced in this post-genomic era. Due to these drawbacks, computational techniques are being sought to establish an effective identification system of phosphoglycerylated lysine residues. The development of a predictor for phosphoglycerylation prediction is not a first, but it is necessary as the latest predictor falls short in adequately detecting phosphoglycerylated and non-phosphoglycerylated lysine residues. Results: In this work, we introduce a new predictor named RAM-PGK, which uses sequence-based information relating to amino acid residues to predict phosphoglycerylated and non-phosphoglycerylated sites. A benchmark dataset was employed for this purpose, which contained experimentally identified phosphoglycerylated and non-phosphoglycerylated lysine residues. From the dataset, we extracted the residue adjacency matrix pertaining to each lysine residue in the protein sequences and converted them into feature vectors, which is used to build the phosphoglycerylation predictor. Conclusion: RAM-PGK, which is based on sequential features and support vector machine classifiers, has shown a noteworthy improvement in terms of performance in comparison to some of the recent prediction methods. The performance metrics of the RAM-PGK predictor are: 0.5741 sensitivity, 0.6436 specificity, 0.0531 precision, 0.6414 accuracy, and 0.0824 Mathews correlation coefficient.
Journal Title
Genes
Conference Title
Book Title
Edition
Volume
11
Issue
12
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Item Access Status
Note
Access the data
Related item(s)
Subject
Genetics
amino acids
lysine
non-phosphoglycerylation
phosphoglycerylation
post-translational modification
Persistent link to this record
Citation
Chandra, AA; Sharma, A; Dehzangi, A; Tsunoda, T, Ram-pgk: Prediction of lysine phosphoglycerylation based on residue adjacency matrix, Genes, 2020, 11 (12), pp. 1524