Regulation of autophagy and apoptosis by Dp44mT-mediated activation of AMPK in pancreatic cancer cells
File version
Author(s)
Sahni, S
Leck, LYW
Jansson, PJ
Richardson, DR
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Upon activation, the 5′-adenosine monophosphate-activated protein kinase (AMPK) increases catabolism, while inhibiting anabolism. The anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), activates AMPK in multiple tumor cell-types (Biochim. Biophys Acta 2016;1863:2916–2933). This acts as an initial cell “rescue response” after iron-depletion mediated by Dp44mT. Considering Dp44mT-mediated AMPK activation, the role of AMPK on Dp44mT cytotoxicity was examined. Dp44mT increased the p-AMPK/AMPK ratio in multiple tumor cell-types over short (24 h) and longer (72 h) incubations. Notably, Dp44mT was more effective in inhibiting tumor cell proliferation after AMPK silencing, potentially due to the loss of AMPK-mediated metabolic plasticity that protects cells against Dp44mT cytotoxicity. The silencing of AMPK-increased cellular cholesterol and stabilized lysosomes against Dp44mT-mediated lysosomal membrane permeabilization. This was substantiated by studies demonstrating that the cholesterol-depleting agent, methyl-β-cyclodextrin (MβCD), restores Dp44mT-mediated lysosomal membrane permeabilization in AMPK silenced cells. The increased levels of cholesterol after AMPK silencing were independent of the ability of AMPK to inhibit the rate-limiting step of cholesterol synthesis via the inactivating phosphorylation of 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) at Ser872. In fact, Dp44mT did not increase phosphorylation of HMGCR at (Ser872), but decreased total HMGCR expression similarly in both the presence or absence of AMPK silencing. Dp44mT was demonstrated to increase autophagic initiation after AMPK silencing via an AMPK- and Beclin-1-independent mechanism. Further, there was increased cleaved caspase 3 and cleaved PARP after incubation of AMPK silenced cells with Dp44mT. Overall, AMPK silencing promotes Dp44mT anti-proliferative activity, suggesting a role for AMPK in rescuing its cytotoxicity by inhibiting autophagy and also apoptosis.
Journal Title
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Conference Title
Book Title
Edition
Volume
1866
Issue
5
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Biochemistry and cell biology
Medical biochemistry and metabolomics
Clinical sciences
Science & Technology
Life Sciences & Biomedicine
Biochemistry & Molecular Biology
Biophysics
Cell Biology
Persistent link to this record
Citation
Krishan, S; Sahni, S; Leck, LYW; Jansson, PJ; Richardson, DR, Regulation of autophagy and apoptosis by Dp44mT-mediated activation of AMPK in pancreatic cancer cells, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2020, 1866 (5)