Bioanalytical assessment of adaptive stress responses in drinking water: A predictive tool to differentiate between micropollutants and disinfection by-products
File version
Accepted Manuscript (AM)
Author(s)
Feliers, Cedric
Lecarpentier, Caroline
Neale, Peta A
Schlichting, Rita
Thibert, Sylvie
Escher, Beate I
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Drinking water can contain low levels of micropollutants, as well as disinfection by-products (DBPs) that form from the reaction of disinfectants with organic and inorganic matter in water. Due to the complex mixture of trace chemicals in drinking water, targeted chemical analysis alone is not sufficient for monitoring. The current study aimed to apply in vitro bioassays indicative of adaptive stress responses to monitor the toxicological profiles and the formation of DBPs in three drinking water distribution systems in France. Bioanalysis was complemented with chemical analysis of forty DBPs. All water samples were active in the oxidative stress response assay, but only after considerable sample enrichment. As both micropollutants in source water and DBPs formed during treatment can contribute to the effect, the bioanalytical equivalent concentration (BEQ) approach was applied for the first time to determine the contribution of DBPs, with DBPs found to contribute between 17 and 58% of the oxidative stress response. Further, the BEQ approach was also used to assess the contribution of volatile DBPs to the observed effect, with detected volatile DBPs found to have only a minor contribution as compared to the measured effects of the non-volatile chemicals enriched by solid-phase extraction. The observed effects in the distribution systems were below any level of concern, quantifiable only at high enrichment and not different from bottled mineral water. Integrating bioanalytical tools and the BEQ mixture model for monitoring drinking water quality is an additional assurance that chemical monitoring is not overlooking any unknown chemicals or transformation products and can help to ensure chemically safe drinking water.
Journal Title
Water Research
Conference Title
Book Title
Edition
Volume
132
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Item Access Status
Note
Access the data
Related item(s)
Subject
Environmental management not elsewhere classified