Non-target effects of repeated chlorothalonil application on soil nitrogen cycling: The key functional gene study
File version
Author(s)
Xu, Zhihong
Teng, Ying
Christie, Peter
Wang, Jun
Ren, Wenjie
Luo, Yongming
Li, Zhengao
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
The widespread and increasing application of chlorothalonil (CTN) raises concerns about its non-target impacts, but little information is available on the effect of CTN on the key functional genes related to soil nitrogen (N) cycling, especially in the case of repeated applications. In the present study, a microcosm incubation was conducted to determine CTN residues and the impacts on the abundances of key functional genes related to N cycling after repeated CTN applications. The results demonstrated that repeated CTN applications at the recommended application rate and five times the recommended rate led to the accumulation of CTN residue in soil at concentrations of 5.59 and 78.79 mg kg− 1, respectively, by the end of incubation. Real time PCR (RT-PCR) revealed that repeated CTN applications had negative effects on the chiA and aprA gene abundances. There were significantly negative correlations between CTN residues and abundances of AOA and AOB genes. In addition, the abundances of key functional genes involved in soil denitrification were declined by repeated CTN applications with the sole exception of the nosZ gene. This study suggests that repeated CTN applications could lead to the accumulation of CTN residue and generate somewhat inconsistent and erratic effects on the abundances of key functional genes related to soil N cycling.
Journal Title
Science of the Total Environment
Conference Title
Book Title
Edition
Volume
543
Issue
Part A
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Ecological applications not elsewhere classified