Citicoline induces angiogenesis improving survival of vascular/human brain microvessel endothelial cells through pathways involving ERK1/2 and insulin receptor substrate-1

Loading...
Thumbnail Image
File version
Author(s)
Krupinski, J
Abudawood, M
Matou-Nasri, S
Al-Baradie, R
Petcu, EB
Justicia, C
Planas, A
Liu, D
Rovira, N
Grau-Slevin, M
Secades, J
Slevin, M
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2012
Size

1770324 bytes

File type(s)

application/pdf

Location
Abstract

Background Citicoline is one of the neuroprotective agents that have been used as a therapy in stroke patients. There is limited published data describing the mechanisms through which it acts. Methods We used in vitro angiogenesis assays: migration, proliferation, differentiation into tube-like structures in Matrigel頡nd spheroid development assays in human brain microvessel endothelial cells (hCMEC/D3). Western blotting was performed on protein extraction from hCMEC/D3 stimulated with citicoline. An analysis of citicoline signalling pathways was previously studied using a Kinexus phospho-protein screening array. A staurosporin/calcium ionophore-induced apoptosis assay was performed by seeding hCMEC/D3 on to glass coverslips in serum poor medium. In a pilot in vivo study, transient MCAO in rats was carried out with and without citicoline treatment (1000 mg/Kg) applied at the time of occlusion and subsequently every 3 days until euthanasia (21 days). Vascularity of the stroke-affected regions was examined by immunohistochemistry. Results Citicoline presented no mitogenic and chemotactic effects on hCMEC/D3; however, it significantly increased wound recovery, the formation of tube-like structures in Matrigel頡nd enhanced spheroid development and sprouting. Citicoline induced the expression of phospho-extracellular-signal regulated kinase (ERK)-1/2. Kinexus assays showed an over-expression of insulin receptor substrate-1 (IRS-1). Knock-down of IRS-1 with targeted siRNA in our hCMEC/D3 inhibited the pro-angiogenic effects of citicoline. The percentage of surviving cells was higher in the presence of citicoline. Citicoline treatment significantly increased the numbers of new, active CD105-positive microvessels following MCAO. Conclusions The findings demonstrate both a pro-angiogenic and protective effect of citicoline on hCMEC/D3 in vitro and following middle cerebral artery occlusion (MCAO) in vivo.

Journal Title

Vascular Cell

Conference Title
Book Title
Edition
Volume

4

Issue

1

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2012 Krupinski et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Item Access Status
Note

Page numbers are not for citation purposes. Instead, this article has the unique article number of 20.

Access the data
Related item(s)
Subject

Biochemistry and cell biology

Cardiovascular medicine and haematology

Oncology and carcinogenesis

Persistent link to this record
Citation
Collections