Free ammonia pretreatment improves anaerobic methane generation from algae
File version
Author(s)
Sun, Jing
Liu, Sitong
Gao, Li
Zhou, Xu
Wang, Dongbo
Song, Kang
Nghiem, Long D
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Anaerobic methane generation from algae is hindered by the slow and poor algae biodegradability. A novel free ammonia (NH3 i.e. FA) pretreatment technology was proposed in this work to enhance anaerobic methane generation from algae cultivated using a real secondary effluent. The algae solubilisation was 0.05–0.06 g SCOD/g TCOD (SCOD: soluble chemical oxygen demand; TCOD: total chemical oxygen demand) following FA pretreatment of 240–530 mg NH3–N/L for 24 h, whereas the solubilisation was only 0.01 g SCOD/g TCOD for the untreated algae. This indicates that FA pretreatment at 240–530 mg NH3–N/L could substantially enhance algae solubilisation. Biochemical methane potential tests revealed that FA pretreatment on algae at 240–530 mg NH3–N/L is able to significantly enhance anaerobic methane generation. The hydrolysis rate (k) and biochemical methane potential (P0) of algae increased from 0.21 d−1 and 132 L CH4/kg TCOD to 0.33–0.50 d−1 and 140–154 L CH4/kg TCOD, respectively, after the algae was pretreated by FA at 240–530 mg NH3–N/L. Further analysis indicated that FA pretreatment improved k of both quickly and slowly biodegradable substrates, and also increased P0 of the slowly biodegradable substrate although it negatively affected P0 of the quickly biodegradable substrate. This FA technology is a closed-loop technology.
Journal Title
Water Research
Conference Title
Book Title
Edition
Volume
162
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Water resources engineering
Water treatment processes
Environmental sciences