Cluster Analysis of Gene Expression Data

No Thumbnail Available
File version
Author(s)
Liew, Alan Wee-Chung
Law, Ngai-Fong
Yan, Hong
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)

J.R.R. Dopico, J. Dorado, A. Pazos

Date
2009
Size
File type(s)
Location
License
Abstract

Important insights into gene function can be gained by gene expression analysis. For example, some genes are turned on (expressed) or turned off (repressed) when there is a change in external conditions or stimuli. The expression of one gene is often regulated by the expression of other genes. A detail analysis of gene expression information will provide an understanding about the inter-networking of different genes and their functional roles. DNA microarray technology allows massively parallel, high throughput genome-wide profiling of gene expression in a single hybridization experiment [Lockhart & Winzeler, 2000]. It has been widely used in numerous studies over a broad range of biological disciplines, such as cancer classification (Armstrong et al., 2002), identification of genes relevant to a certain diagnosis or therapy (Muro et al., 2003), investigation of the mechanism of drug action and cancer prognosis (Kim et al., 2000; Duggan et al., 1999). Due to the large number of genes involved in microarray experiment study and the complexity of biological networks, clustering is an important exploratory technique for gene expression data analysis. In this article, we present a succinct review of some of our work in cluster analysis of gene expression data.

Journal Title
Conference Title
Book Title

Encyclopedia of Artificial Intelligence

Edition
Volume
Issue
Thesis Type
Degree Program
School
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Pattern Recognition and Data Mining

Persistent link to this record
Citation
Collections