Probing function and structure of trehalose-6-phosphate phosphatases from pathogenic organisms suggests distinct molecular groupings

No Thumbnail Available
File version
Author(s)
Cross, Megan
Lepage, Romain
Rajan, Siji
Biberacher, Sonja
Young, Neil D
Kim, Bo-Na
Coster, Mark J
Gasser, Robin B
Kim, Jeong-Sun
Hofmann, Andreas
Primary Supervisor
Other Supervisors
Editor(s)
Date
2017
Size
File type(s)
Location
License
Abstract

The trehalose biosynthetic pathway is of great interest for the development of novel therapeutics because trehalose is an essential disaccharide in many pathogens but is neither required nor synthesized in mammalian hosts. As such, trehalose-6-phosphate phosphatase (TPP), a key enzyme in trehalose biosynthesis, is likely an attractive target for novel chemotherapeutics. Based on a survey of genomes from a panel of parasitic nematodes and bacterial organisms and by way of a structure-based amino acid sequence alignment, we derive the topological structure of monoenzyme TPPs and classify them into 3 groups. Comparison of the functional roles of amino acid residues located in the active site for TPPs belonging to different groups reveal nuanced variations. Because current literature on this enzyme family shows a tendency to infer functional roles for individual amino acid residues, we investigated the roles of the strictly conserved aspartate tetrad in TPPs of the nematode Brugia malayi by using a conservative mutation approach. In contrast to aspartate-213, the residue inferred to carry out the nucleophilic attack on the substrate, we found that aspartate-215 and aspartate-428 of BmTPP are involved in the chemistry steps of enzymatic hydrolysis of the substrate. Therefore, we suggest that homology-based inference of functionally important amino acids by sequence comparison for monoenzyme TPPs should only be carried out for each of the 3 groups.

Journal Title

FASEB Journal

Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note

This publication has been entered into Griffith Research Online as an Advanced Online Version.

Access the data
Related item(s)
Subject

Biochemistry and cell biology

Zoology

Medical parasitology

Medical physiology

Persistent link to this record
Citation
Collections