Finding Patterns in Signals Using Lossy Text Compression

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Rozenberg, Liat
Lotan, Sagi
Feldman, Dan
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2019
Size
File type(s)
Location
Abstract

Whether the source is autonomous car, robotic vacuum cleaner, or a quadcopter, signals from sensors tend to have some hidden patterns that repeat themselves. For example, typical GPS traces from a smartphone contain periodic trajectories such as “home, work, home, work, ⋯”. Our goal in this study was to automatically reverse engineer such signals, identify their periodicity, and then use it to compress and de-noise these signals. To do so, we present a novel method of using algorithms from the field of pattern matching and text compression to represent the “language” in such signals. Common text compression algorithms are less tailored to handle such strings. Moreover, they are lossless, and cannot be used to recover noisy signals. To this end, we define the recursive run-length encoding (RRLE) method, which is a generalization of the well known run-length encoding (RLE) method. Then, we suggest lossy and lossless algorithms to compress and de-noise such signals. Unlike previous results, running time and optimality guarantees are proved for each algorithm. Experimental results on synthetic and real data sets are provided. We demonstrate our system by showing how it can be used to turn commercial micro air-vehicles into autonomous robots. This is by reverse engineering their unpublished communication protocols and using a laptop or on-board micro-computer to control them. Our open source code may be useful for both the community of millions of toy robots users, as well as for researchers that may extend it for further protocols.

Journal Title

Algorithms

Conference Title
Book Title
Edition
Volume

12

Issue

12

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Mathematical sciences

Engineering

Science & Technology

Technology

Computer Science, Artificial Intelligence

Computer Science, Theory & Methods

Computer Science

Persistent link to this record
Citation

Rozenberg, L; Lotan, S; Feldman, D, Finding Patterns in Signals Using Lossy Text Compression, Algorithms, 2019, 12 (12), pp. 267-267

Collections