Binary dragonfly optimization for feature selection using time-varying transfer functions
File version
Accepted Manuscript (AM)
Author(s)
Aljarah, Ibrahim
Heidari, Ali Asghar
Faris, Hossam
Fournier-Viger, Philippe
Li, Xiaodong
Mirjalili, Seyedali
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
The Dragonfly Algorithm (DA) is a recently proposed heuristic search algorithm that was shown to have excellent performance for numerous optimization problems. In this paper, a wrapper-feature selection algorithm is proposed based on the Binary Dragonfly Algorithm (BDA). The key component of the BDA is the transfer function that maps a continuous search space to a discrete search space. In this study, eight transfer functions, categorized into two families (S-shaped and V-shaped functions) are integrated into the BDA and evaluated using eighteen benchmark datasets obtained from the UCI data repository. The main contribution of this paper is the proposal of time-varying S-shaped and V-shaped transfer functions to leverage the impact of the step vector on balancing exploration and exploitation. During the early stages of the optimization process, the probability of changing the position of an element is high, which facilitates the exploration of new solutions starting from the initial population. On the other hand, the probability of changing the position of an element becomes lower towards the end of the optimization process. This behavior is obtained by considering the current iteration number as a parameter of transfer functions. The performance of the proposed approaches is compared with that of other state-of-art approaches including the DA, binary grey wolf optimizer (bGWO), binary gravitational search algorithm (BGSA), binary bat algorithm (BBA), particle swarm optimization (PSO), and genetic algorithm in terms of classification accuracy, sensitivity, specificity, area under the curve, and number of selected attributes. Results show that the time-varying S-shaped BDA approach outperforms compared approaches.
Journal Title
Knowledge-Based Systems
Conference Title
Book Title
Edition
Volume
161
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Item Access Status
Note
Access the data
Related item(s)
Subject
Psychology
Artificial intelligence
Data management and data science
Machine learning