Experimental study of a novel multi-hazard resistant prefabricated concrete frame structure

No Thumbnail Available
File version
Author(s)
Lin, Kaiqi
Lu, Xinzheng
Li, Yi
Guan, Hong
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2019
Size
File type(s)
Location
License
Abstract

Reinforced concrete (RC) frames are one of the most commonly used structural systems worldwide. Earthquake actions and progressive collapse caused by accidental local damage are two critical hazards increasing collapse risks of multi-story RC frames. A significant difference is well recognized between the structural seismic design and progressive collapse design. Whilst the seismic design focuses on resisting the lateral forces due to earthquake, the progressive collapse design deals with resisting the unbalanced vertical load induced by a localized failure. Existing research has revealed that considering the two different designs individually for a structure may lead to an undesirable overall structural performance and unnecessary waste of construction materials. In this study, a novel Multi-Hazard Resistant, Prefabricated Concrete (MHRPC) frame system is proposed to satisfy the demands of both structural seismic and progressive collapse designs. Cyclic and progressive collapse tests are conducted to validate the performance of this newly proposed structural system. The mechanisms of the MHRPC frame system under both cyclic loads and a middle column removal scenario are analyzed based on the experimental results and numerical simulations using OpenSees. The results indicate that the proposed fame system exhibits such characteristics as large rotation, low damage, self-centering, and ease of repair. The system is also proven to be able to meet the multi-hazard design requirements of RC frames against both earthquake actions and progressive collapse.

Journal Title
Soil Dynamics and Earthquake Engineering
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
This publication has been entered into Griffith Research Online as an Advanced Online Version.
Access the data
Related item(s)
Subject
Geophysics
Civil engineering
Civil engineering not elsewhere classified
Persistent link to this record
Citation
Collections