Writer Identification by Training on One Script but Testing on Another
File version
Author(s)
Chaudhuri, Bidyut B.
Blumenstein, Michael
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Cancún, México
License
Abstract
This paper deals with identifying a writer from his/her offline handwriting. In a multilingual country where a writer can scribe in multiple scripts, writer identification becomes challenging when we have individual handwriting data in one script while we need to verify/identify a writer from handwriting in another script. In this paper such an issue is addressed with two scripts: English and Bengali. Here we model the task as a classification problem, where training data contains only Bengali handwritten samples and testing is performed on English handwritten texts. This work is based on the understanding that a writer has some inherent stroke characteristics that are independent of the script in which (s)he writes. In this work, some implicit structural and statistical features are extracted, and multiple classifiers are employed for writer identification. Many training sessions are run on a database of 100 writers and the performances are analyzed. We have obtained encouraging results on this database, which show the effectiveness of our method.
Journal Title
Conference Title
2016 23rd International Conference on Pattern Recognition (ICPR)
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Computer Vision