Identification of source and sink populations for the emergence and global spread of the East-Asia clone of community-associated MRSA
File version
Version of Record (VoR)
Author(s)
Goncheva, Mariya
Richardson, Emily
McAdam, Paul R
Raftis, Emma
Kearns, Angela
Daum, Robert S
David, Michael Z
Lauderdale, Tsai Ling
Edwards, Giles F
Nimmo, Graeme R
Coombs, Geoffrey W
Huijsdens, Xander
Woolhouse, Mark EJ
Fitzgerald, J Ross
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Background: Our understanding of the factors influencing the emergence, dissemination and global distribution of epidemic clones of bacteria is limited. ST59 is a major epidemic clone of community-associated MRSA in East Asia, responsible for extensive morbidity and mortality, but has a much lower prevalence in other parts of the world. The geographic origin of ST59 and its international routes of dissemination are unclear and disputed in the literature.
Results: To investigate the origin and spread of the ST59 clone, we obtained whole genome sequences of isolates from four continents, sampled over more than a decade, and carried out a time-scaled phylogeographic analysis. We discover that two distinct ST59 clades emerged concurrently, in East Asia and the USA, but underwent clonal expansion at different times. The East Asia clade was strongly enriched for gene determinants associated with antibiotic resistance, consistent with regional differences in antibiotic usage. Both clones spread independently to Australia and Europe, and we found evidence of the persistence of multi-drug resistance following export from East Asia. Direct transfer of strains between Taiwan and the USA was not observed in either direction, consistent with geographic niche exclusion.
Conclusions: Our results resolve a longstanding controversy regarding the origin of the ST59 clone, revealing the major global source and sink populations and routes for the spread of multi-drug resistant clones. Additionally, our findings indicate that diversification of the accessory genome of epidemic clones partly reflects region-specific patterns of antibiotic usage, which may influence bacterial fitness after transmission to different geographic locations.
Journal Title
Genome Biology
Conference Title
Book Title
Edition
Volume
17
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Item Access Status
Note
Access the data
Related item(s)
Subject
Environmental sciences
Biological sciences
Other biological sciences not elsewhere classified