Generating Oxygen Vacancies in MnO Hexagonal Sheets for Ultralong Life Lithium Storage with High Capacity
File version
Author(s)
Zhang, Wei
Chen, Ning
Chen, Shuai
Xu, Wenjia
Cai, Rongsheng
Brown, Christopher L
Yang, Dongjiang
Yao, Xiangdong
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
The polar surface of (001) wurtzite-structured MnO possesses substantial electrostatic instabilities that facilitate a wurtzite to graphene-like sheet transformation during the lithiation/delithiation process when used in battery technologies. This transformation results in cycle instability and loss of cell efficiency. In this work, we synthesized MnO hexagonal sheets (HSs) possessing abundant oxygen vacancy defects (MnO-Vo HSs) by pyrolyzing and reducing MnCO3 HSs under an atmosphere of Ar/H2. The oxygen vacancies (Vos) were generated in the reduction process and have been characterized using a range of techniques: X-ray absorption fine structure, electron-spin resonance, X-ray absorption near edge structure, Artemis modeling, and R space Feff modeling. The data arising from these analyses inform us that the introduction of one Vo defect within each O atom layer can reduce the charge density by 3.2 × 10–19 C, balancing the internal nonzero dipole moment and rendering the wurtzite structure more stable, so inhibiting the change to a graphene-like structure. Density function theory calculations demonstrate that the incorporation of Vos sites significantly improves the charge accumulation around Li atoms and increases Li+ adsorption energies (−2.720 eV). When used as an anode material for lithium ion batteries, the MnO-Vo HSs exhibit high specific capacity (1228.3 mAh g–1 at 0.1 A g–1) and excellent cell cycling stabilities (∼88.1% capacity retention after 1000 continuous charge/discharge cycles at 1.0 A g–1).
Journal Title
ACS NANO
Conference Title
Book Title
Edition
Volume
13
Issue
2
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Particle physics
Electrical energy storage