The ModA2 Phasevarion of nontypeable Haemophilus influenzae Regulates Resistance to Oxidative Stress and Killing by Human Neutrophils
File version
Version of Record (VoR)
Author(s)
Branstool, M Taylor
Atack, John M
Robledo-Avila, Frank
Partida-Sanchez, Santiago
Jennings, Michael P
Bakaletz, Lauren O
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Nontypeable Haemophilus influenzae (NTHI) is the causative agent of multiple respiratory tract infections. Several human pathogens, including NTHI, possess a novel genetic system, termed the phasevarion, which mediates a rapid and reversible change in the expression of many genes throughout the chromosome. This occurs by phase variation of a single gene (modA) that encodes a DNA methyltransferase and results in two phenotypically distinct subpopulations, ON and OFF. NTHI encounters many pressures within the various microenvironments of its human host as the disease course evolves from one of asymptomatic nasopharyngeal carriage to overt disease. These include oxidative stresses, which are present throughout the respiratory tract. To persist in the human nasopharynx and as a pathogen throughout the airways, NTHI must be able to mitigate toxic levels of oxidative stress. Here we show that expression of ModA2, modA2 ON status, resulted in increased sensitivity to oxidative stress. Furthermore, the modA2 ON status resulted in decreased resistance to neutrophil-mediated killing, which resulted in selection for the modA2 OFF subpopulation in an ex vivo survival assay. These findings highlight the importance of the ModA2 phasevarion in adaptation to innate host defences and reveal an additional microenvironmental pressure that selected for a specific ModA2 subpopulation.
Journal Title
Scientific Reports
Conference Title
Book Title
Edition
Volume
7
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© The Author(s) 2017. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Item Access Status
Note
Access the data
Related item(s)
Subject
Biochemistry and cell biology not elsewhere classified