High-Order Tensor Pooling with Attention for Action Recognition

Loading...
Thumbnail Image
File version

Accepted Manuscript (AM)

Author(s)
Wang, L
Sun, K
Koniusz, P
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2024
Size
File type(s)
Location

Seoul, Korea, Republic of

License
Abstract

We aim at capturing high-order statistics of feature vectors formed by a neural network, and propose end-to-end second- and higher-order pooling to form a tensor descriptor. Tensor descriptors require a robust similarity measure due to low numbers of aggregated vectors and the burstiness phenomenon, when a given feature appears more/less frequently than statistically expected. The Heat Diffusion Process (HDP) on a graph Laplacian is closely related to the Eigenvalue Power Normalization (EPN) of the covariance/auto-correlation matrix, whose inverse forms a loopy graph Laplacian. We show that the HDP and the EPN play the same role, i.e., to boost or dampen the magnitude of the eigenspectrum thus preventing the burstiness. We equip higher-order tensors with EPN which acts as a spectral detector of higher-order occurrences to prevent burstiness. We also prove that for a tensor of order r built from d dimensional feature descriptors, such a detector gives the likelihood if at least one higher-order occurrence is 'projected' into one of binom(d,r) subspaces represented by the tensor; thus forming a tensor power normalization metric endowed with binom(d,r) such 'detectors'. For experimental contributions, we apply several second- and higher-order pooling variants to action recognition, provide previously not presented comparisons of such pooling variants, and show state-of-the-art results on HMDB-51, YUP++ and MPII Cooking Activities.

Journal Title
Conference Title

ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

This work is covered by copyright. You must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a specified licence, refer to the licence for details of permitted re-use. If you believe that this work infringes copyright please make a copyright takedown request using the form at https://www.griffith.edu.au/copyright-matters.

Item Access Status
Note
Access the data
Related item(s)
Subject
Persistent link to this record
Citation

Wang, L; Sun, K; Koniusz, P, High-Order Tensor Pooling with Attention for Action Recognition, ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024, pp. 3885-3889