Polyphenols Protect the Epithelial Barrier Function of Caco-2 Cells Exposed to Indomethacin through the Modulation of Occludin and Zonula Occludens-1 Expression
File version
Author(s)
Morales, Pamela
Gotteland, Martin
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
The aim of this study was to determine the protective effect of quercetin, epigallocatechingallate, resveratrol, and rutin against the disruption of epithelial integrity induced by indomethacin in Caco-2 cell monolayers. Indomethacin decreased the transepithelial electrical resistance and increased the permeability of the monolayers to fluorescein-dextran. These alterations were abolished by all the tested polyphenols but rutin, with quercetin being the most efficient. The protective effect of quercetin was associated with its capacity to inhibit the redistribution of ZO-1 protein induced in the tight junction by indomethacin or rotenone, a mitochondrial complex-I inhibitor, and to prevent the decrease of ZO-1 and occludin expression induced by indomethacin. The fact that the antioxidant polyphenols assayed in this study differ in their protective capacity against the epithelial damage induced by indomethacin suggests that this damage is due to the ability of this agent to induce not only oxidative stress but also mitochondrial dysfunction.
Journal Title
Journal of Agricultural and Food Chemistry
Conference Title
Book Title
Edition
Volume
61
Issue
22
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Chemical sciences
Agricultural, veterinary and food sciences
Engineering
Science & Technology
Life Sciences & Biomedicine
Physical Sciences
Agriculture, Multidisciplinary
Chemistry, Applied
Persistent link to this record
Citation
Carrasco-Pozo, C; Morales, P; Gotteland, M, Polyphenols Protect the Epithelial Barrier Function of Caco-2 Cells Exposed to Indomethacin through the Modulation of Occludin and Zonula Occludens-1 Expression, Journal of Agricultural and Food Chemistry, 2013, 61 (22), pp. 5291-5297