The name's bond......disulfide bond
File version
Author(s)
Kurz, Mareike
Shouldice, Stephen R
Martin, Jennifer L
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
A repeating theme in the structural biology of disulfide oxidants and isomerases is the extraordinary architectural similarity between functionally related proteins from prokaryotes and eukaryotes. The recently determined structure of full-length yeast protein disulfide isomerase (PDI) reveals a U-shaped molecule with two redox-active sites. It bears a remarkable resemblance to the V-shaped, but dimeric, bacterial disulfide isomerases DsbC and DsbG. Similarly, the much-anticipated structure of the bacterial membrane protein DsbB, the redox partner of DsbA, comprises a flexible redox loop embedded in an antiparallel four-helix bundle. This architecture is similar to that of soluble eukaryotic Ero1p and Erv2p proteins, the redox partners of PDI. Importantly, the DsbB crystal structure is a complex with DsbA, providing our first view of the molecular interactions between these two proteins.
Journal Title
Current Opinion in Structural Biology
Conference Title
Book Title
Edition
Volume
17
Issue
6
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Medicinal and biomolecular chemistry
Biochemistry and cell biology
Biochemistry and cell biology not elsewhere classified