Gold(I) and silver(I) complexes of 2,3-bis(diphenylphosphino)maleic acid: structural studies and antitumour activity
File version
Author(s)
Bowen, RJ
Fernandes, MA
Layh, M
Lesueur, WJ
Mahepal, S
Mtotywa, MM
Sue, RE
van Rensburg, CEJ
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
The 2:1 and 1:2 adducts of Au(I) and 1:2 adducts of Ag(I) with the diphosphine 2,3-bis(diphenylphosphino)maleic acid (dpmaa) have been prepared in high yields. Crystal structures have been determined for the neutral digold complex (AuCl)2(dpmaa) 砲thf (1) and the bis-chelated complex [Au(dpmaa)2]Cl 砈2O 砃H3OH (2). For 1, conformational rigidity imposed by the ethylenic bridge facilitates the formation of short intramolecular Au-Au contacts with no evidence of similar intermolecular contacts. Complex 2 crystallizes with [Au(dpmaa)2]+ cations hydrogen bonded through the carboxyl groups to a water molecule and chloride anion to form a H-bonded chain along the a axis. 31P NMR titration of 1 with dpmaa in acetone shows conversion to 2 at Au:P-P ratios less than 1:1 indicating similar high thermodynamic and kinetic stabilities to other bis-chelated [Au(P-P)2]+ complexes containing 5- or 6-membered chelate rings. The ionic Au(I) complex 2 and the analogous Ag(I) complex [Ag(dpmma)2]NO3 (3) are highly water soluble. The in vitro cytotoxic activity of 2 was assessed against eight different cell lines and no significant activity was found. The solubility properties and solution behaviour of the complexes are compared to the analogous 1,2-bis(diphenylphosphino)ethane (dppe) complexes and the potential significance of these results to the antitumour properties of chelated 1:2 Au(I)diphosphine complexes are discussed.
Journal Title
Inorganica Chimica Acta
Conference Title
Book Title
Edition
Volume
358
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Inorganic chemistry
Physical chemistry
Other chemical sciences