The effects of a porous elastic seabed on interfacial wave propagation
File version
Author(s)
Jeng, D-S
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
A theoretical model for the decay of progressive interfacial gravity waves propagating above a porous bed is developed assuming potential flow in a two-layer system with a free surface and a sharp interface. A new wave dispersion relation for two-layer flow above a quasi-static porous seabed is derived and investigated. The solutions for the nonlinear wave profile are derived using a perturbation method and the effects of geometric and flow parameters including bed characteristics, depth ratios and the densities of the two fluids are studied and discussed. Comparisons with existing analytical solutions for viscous interfacial wave attenuation over a rigid bed demonstrate the relative importance of the porous bed as a mechanism for wave decay. It is shown that the influence of a porous seabed on wave propagation is significant when the depth of the lower layer, normalised by the wavenumber, is less than π.
Journal Title
Ocean Engineering
Conference Title
Book Title
Edition
Volume
34
Issue
13
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Oceanography
Civil engineering
Civil geotechnical engineering
Maritime engineering