Nanoconfined fusion of g-C3N4 within edge-rich vertically oriented graphene hierarchical networks for high-performance photocatalytic hydrogen evolution utilizing superhydrophillic and superaerophobic responses in seawater

No Thumbnail Available
File version
Author(s)
Xu, Chenxuan
Wu, Shenghao
Xiong, Guoping
Guo, Xinzheng
Yang, Huachao
Yan, Jianhua
Cen, Kefa
Bo, Zheng
Ostrikov, Kostya Ken
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2021
Size
File type(s)
Location
License
Abstract

Two-dimensional photocatalysts often suffer severe aggregation due to the inevitable van der Waals forces between nanosheets, which limits their photocatalytic water-splitting efficiency. Herein, a rational design of confined synthesis of g-C3N4 nanomeshes (GCN) on N-doped vertically-oriented graphene (NVG) arrays for enhanced hydrogen evolution is reported. The aggregation of 2D g-C3N4 nanosheets is effectively avoided via physical separation by electrically conductive NVG networks. Well-defined hierarchical architecture of the GCN/NVG photocatalyst endows with superaerophobicity and simultaneously enhanced light absorption. Experimental and ab initio simulation results suggest that the protruding graphene edges induce charge redistribution, thus enhancing interfacial charge separation. The GCN/NVG samples demonstrate a high areal hydrogen evolution rate of 41.7 μmol h−1 cm−2 (225 L m−2 in 24 h, STP) in water and 45.8 μmol h−1 cm−2 (246.2 L m−2 in 24 h, STP) in simulated seawater. This work creates further opportunities for the development of earth-abundant photocatalysts.

Journal Title

Applied Catalysis B: Environmental

Conference Title
Book Title
Edition
Volume

280

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Physical chemistry

Chemical engineering

Environmental engineering

Science & Technology

Physical Sciences

Persistent link to this record
Citation

Xu, C; Wu, S; Xiong, G; Guo, X; Yang, H; Yan, J; Cen, K; Bo, Z; Ostrikov, KK, Nanoconfined fusion of g-C3N4 within edge-rich vertically oriented graphene hierarchical networks for high-performance photocatalytic hydrogen evolution utilizing superhydrophillic and superaerophobic responses in seawater, Applied Catalysis B: Environmental, 2021, 280, pp. 119461

Collections