Assessment of Expressway Traffic Safety Using Gaussian Mixture Model based on Time to Collision
File version
Author(s)
Qu, Xiaobo
Wang, Dianhai
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Traffic safety is of great significance, especially in urban expressway where traffic volume is large and traffic conflicts are highlighted. It is thus important to develop a methodology that is able to assess traffic safety. In this paper, we first analyze the time to collision (TTC) samples from traffic videos collected from Beijing expressway with different locations, lanes, and traffic conditions. Accordingly, some basic descriptive statistics of 5 locations' TTC samples are shown, and it is concluded that Gaussian mixture model (GMM) distribution is the best-fitted distribution to TTC samples based on K-S goodness of fit tests. Using GMM distribution, TTC samples can be divided into three categories: dangerous situations, relative safe situations, and absolute safe situations, respectively. We then proceeds to introduce a novel concept of the percentage of serious traffic conflicts as the percentage of TTC samples below a predetermined threshold value in dangerous situation. After that, assessment results of expressway traffic safety are presented using the proposed traffic safety indictor. The results imply that traffic safety on the weaving segment is lower than that on mainlines and the percentage of serious traffic conflicts on median lane is larger than that on middle lane and shoulder lane.
Journal Title
International Journal of Computational Intelligence Systems
Conference Title
Book Title
Edition
Volume
4
Issue
6
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Transport Engineering
Information and Computing Sciences