Atom-laser coherence and its control via feedback.

Loading...
Thumbnail Image
File version
Author(s)
Thomsen, LK
Wiseman, HM
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2002
Size

305307 bytes

File type(s)

application/pdf

Location
License
Abstract

We present a quantun-mechanical treatment of the coherence properties of a single-mode atom laser. Specifically, we focus on the quantum phase noise of the atomic field as expressed by the first-order coherence function, for which we derive analytical expressions in various regimes. The decay of this function is characterized by the coherence time, or its reciprocal, the linewidth. A crucial contributor to the linewidth is the collisional interaction of the atoms. We find four distinct regimes for the linewidth with increasing interaction strength. These range from the standard laser linewidth, through quadratic and linear regimes, to another constant regime due to quantum revivals of the coherence function. The laser output is only coherent (Bose degenerate) up to the linear regime. However, we show that application of a quantum nondemolition measurement and feedback scheme will increase, by many orders of magnitude, the range of interaction strengths for which it remains coherent.

Journal Title

Physical Review A: Atomic, Molecular and Optical Physics

Conference Title
Book Title
Edition
Volume

65

Issue
Thesis Type
Degree Program
School
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2002 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.

Item Access Status
Note
Access the data
Related item(s)
Subject

Mathematical sciences

Physical sciences

Chemical sciences

Persistent link to this record
Citation
Collections