Quantitative structure-activity relationships for nasal pungency thresholds of volatile organic compounds

No Thumbnail Available
File version
Author(s)
Hau, KM
Connell, DW
Richardson, BJ
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
1999
Size
File type(s)
Location
License
Abstract

A model was developed for describing the triggering of nasal pungency in humans, based on the partition of volatile organic compounds (VOCs) between the air phase and the biophase. Two partition parameters are used in the model: the water-air partition coefficient and the octanol-water partition coefficient. The model was validated using data from the literature, principally on alcohols, acetates and ketones. The model suggests that all test compounds, regardless of their chemical functional groups, bind to a common receptor site within the hydrophobic interior of the bilayer membrane of the trigeminal nerve endings. There is probably only a slight, non-specific interaction between the VOC molecule and the receptor molecule, whereas this type of non-specific interaction for the detection of odor is much stronger. In practical terms, the suggestion that all VOCs share a common irritation receptor site implies that nasal-pungency thresholds of individual VOCs may be additive. Quantitative structure-activity relationships (QSARs) for nasal-pungency thresholds were also developed from the model, which can be used to predict nasal-pungency thresholds of common VOCs. Although the present model does not offer additional precision over that of M.H. Abraham et al., 1996, Fundam. Appl. Toxicol. 31, 71-76, it requires fewer descriptors and offers a physiological basis to the QSAR. Another advantage of the present model is that it also provides a basis for comparison between the olfactory process and nasal pungency.

Journal Title

Toxicological Sciences

Conference Title
Book Title
Edition
Volume

47

Issue

1

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Pharmacology and pharmaceutical sciences

Persistent link to this record
Citation
Collections