Partitioning evapotranspiration based on the concept of underlying water use efficiency

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Zhou, Sha
Yu, Bofu
Zhang, Yao
Huang, Yuefei
Wang, Guangqian
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2016
Size
File type(s)
Location
License
Abstract

Evapotranspiration (ET) is dominated by transpiration (T) in the terrestrial water cycle. However, continuous measurement of transpiration is still difficult, and the effect of vegetation on ET partitioning is unclear. The concept of underlying water use efficiency (uWUE) was used to develop a new method for ET partitioning by assuming that the maximum, or the potential uWUE is related to T while the averaged or apparent uWUE is related to ET. T/ET was thus estimated as the ratio of the apparent over the potential uWUE using half-hourly flux data from 17 AmeriFlux sites. The estimated potential uWUE was shown to be essentially constant for 14 of the 17 sites, and was broadly consistent with the uWUE evaluated at the leaf scale. The annual T/ET was the highest for croplands, i.e., 0.69 for corn and 0.62 for soybean, followed by grasslands (0.60) and evergreen needle leaf forests (0.56), and was the lowest for deciduous broadleaf forests (0.52). The enhanced vegetation index (EVI) was shown to be significantly correlated with T/ET and could explain about 75% of the variation in T/ET among the 71 site-years. The coefficients of determination between EVI and T/ET were 0.84 and 0.82 for corn and soybean, respectively, and 0.77 for deciduous broadleaf forests and grasslands, but only 0.37 for evergreen needle leaf forests. This ET partitioning method is sound in principle and simple to apply in practice, and would enhance the value and role of global FLUXNET in estimating T/ET variations and monitoring ecosystem dynamics.

Journal Title

Water Resources Research

Conference Title
Book Title
Edition
Volume

52

Issue

2

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2016 American Geophysical Union. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.

Item Access Status
Note
Access the data
Related item(s)
Subject

Physical geography and environmental geoscience

Civil engineering

Environmental engineering

Environmental engineering not elsewhere classified

Persistent link to this record
Citation
Collections