Rule-based segmentation of LIDAR point cloud for automatic extraction of building roof planes

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Awrangjeb, Mohammad
Fraser, Clive S
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)

Rottensteiner, F

Stilla, U

Hinz, S

Date
2013
Size
File type(s)
Location

Antalya, TURKEY

Abstract

This paper presents a new segmentation technique for LIDAR point cloud data for automatic extraction of building roof planes. Using the ground height from a DEM (Digital Elevation Model), the raw LIDAR points are separated into two groups: ground and nonground points. The ground points are used to generate a "building mask" in which the black areas represent the ground where there are no laser returns below a certain height. The non-ground points are segmented to extract the planar roof segments. First, the building mask is divided into small grid cells. The cells containing the black pixels are clustered such that each cluster represents an individual building or tree. Second, the non-ground points within a cluster are segmented based on their coplanarity and neighbourhood relations. Third, the planar segments are refined using a rule-based procedure that assigns the common points among the planar segments to the appropriate segments. Finally, another rule-based procedure is applied to remove tree planes which are small in size and randomly oriented. Experimental results on the Vaihingen data set show that the proposed method offers high building detection and roof plane extraction rates.

Journal Title
Conference Title

CMRT13 - CITY MODELS, ROADS AND TRAFFIC 2013

Book Title
Edition
Volume

II-3/W3

Issue

3W3

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© The Author(s) 2013. This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Computer vision

Image processing

Photogrammetry and remote sensing

Persistent link to this record
Citation