Regulation of the beta-Adrenergic Receptor Signaling Pathway in Sustained Ligand-Activated Preconditioning

No Thumbnail Available
File version
Author(s)
Hoe, See LE
Foster, SR
Wendt, L
Patel, HH
Headrick, JP
Peart, JN
Primary Supervisor
Other Supervisors
Editor(s)
Date
2019
Size
File type(s)
Location
License
Abstract

Sustained ligand-activated preconditioning (SLP), induced with chronic opioid receptor (OR) agonism, enhances tolerance to ischemia/reperfusion injury in young and aged hearts. Underlying mechanisms remain ill-defined, although early data implicate phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) during the induction phase, and β2-adrenoceptor (β2-AR), Gs alpha subunit (Gαs), and protein kinase A (PKA) involvement in subsequent cardioprotection. Here, we tested for induction of a protective β2-AR/Gαs/PKA signaling axis with SLP to ascertain whether signaling changes were PI3K-dependent (by sustained cotreatment with wortmannin), and whether the downstream PKA target Rho kinase (ROCK) participates in subsequent cardioprotection (by acute treatment with fasudil). A protected phenotype was evident after 5 days of OR agonism (using morphine) in association with increased membrane versus reduced cytosolic levels of total and phosphorylated β2-ARs; increased membrane and cytosolic expression of 52 and 46 kDa Gαs isoforms, respectively; and increased phosphorylation of PKA and Akt. Nonetheless, functional sensitivities of β2-ARs and adenylyl cyclase were unchanged based on concentration-response analyses for formoterol, fenoterol, and 6-[3-(dimethylamino)propionyl]-forskolin. Protection with SLP was not modified by ROCK inhibition, and changes in β2-AR, Gαs, and PKA expression appeared insensitive to PI3K inhibition, although 5 days of wortmannin alone exerted unexpected effects on signaling (also increasing membrane β2-AR and PKA expression/phosphorylation and Gαs levels). In summary, sustained OR agonism upregulates cardiac membrane β2-AR expression and phosphorylation in association with increased Gαs subtype levels and PKA phosphorylation. While Akt phosphorylation was evident, PI3K activity appears nonessential to OR upregulation of the β2-AR signal axis. This opioidergic remodeling of β2-AR signaling may explain β2-AR, Gαs, and PKA dependence of SLP protection.

Journal Title

JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS

Conference Title
Book Title
Edition
Volume

369

Issue

1

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Pharmacology and pharmaceutical sciences

Persistent link to this record
Citation
Collections