Soil extractable carbon and nitrogen, microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland

No Thumbnail Available
File version
Author(s)
Zhou, Xiaoqi
Chen, Chengrong
Wang, Yanfen
Xu, Zhihong
Duan, Jichuang
Hao, Yanbin
Smaill, Simeon
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2013
Size
File type(s)
Location
License
Abstract

Few studies have examined the long-term responses of soil labile organic carbon (C) and nitrogen (N) and microbial activities to climate change in semiarid and arid regions. Here we investigated soil extractable organic carbon (EOC) and nitrogen (EON), microbial biomass and microbial metabolic activities at two depths of 0-10 and 10-20 cm in response to single and combined effects of warming and increased precipitation in a semiarid grassland of northern China since April 2005. Soil EOC and EON pools were measured using KCl and hot water extractions, and microbial metabolic activities were measured using MicroResp. Results showed that warming had no effects on EOC, EON and microbial biomass C (MBC) and N (MBN) in the two extracts as well as the ratio of MBC to MBN at the two depths, but increased precipitation significantly increased MBC, MBN, EON and microbial quotient at the 0-10 cm depth. Warming significantly decreased microbial metabolic activities at both soil depths, but significantly increased microbial metabolic diversity (H) and evenness (E) at the 10-20 cm depth. Increased precipitation significantly decreased microbial metabolic activities, but significantly increased H and E at the two depths. Warming and increased precipitation significantly interacted to affect microbial metabolic activities at the two depths as well as H and E at the 10-20 cm depth. Redundancy analysis determined that microbial quotient, i.e., the ratio of MBC to total C, pH and NH4+-N greatly accounted for the variances in the soil microbial metabolic profiles, but the ratio of EOC to EON, moisture and microbial quotient largely accounted for the variances in the soil microbial metabolic profiles specifically at the 10-20 cm depth, implying that microbial physiology such as microbial quotient rather than the amounts of labile organic C and N pools exerted more influence on driving the patterns of microbial metabolic profiles. Our results indicated that soil EOC and EON, microbial biomass and microbial metabolic activities at the two depths differentially responded to warming and increased precipitation in this semiarid region.

Journal Title

Geoderma

Conference Title
Book Title
Edition
Volume

206

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Environmental sciences

Soil chemistry and soil carbon sequestration (excl. carbon sequestration science)

Biological sciences

Agricultural, veterinary and food sciences

Soil sciences

Persistent link to this record
Citation
Collections