Wave Induced Soil Responses of Seabed with Fine Grained Soil
File version
Author(s)
Oh, E
Chang, SC
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Jin S. Chung
Date
Size
118425 bytes
File type(s)
application/pdf
Location
Busan, Korea
License
Abstract
With the increasing of extreme weather events, more attention has been drawn to the protection of coastal structures. Wave-induced seabed instability is a major factor that may damage the coastal structures. In this paper, a 2-D quasi-dynamic u-w-p model is developed to examine different seabed behavior under different wave actions. Further, this paper aims to acquire a better understanding of the soil failure process, which will be able to reduce the possible damage of coastal structure caused by extreme weather events. In u-w-p model, acceleration, velocity, and displacement terms are considered separately for both solid and fluid phases. The u-w-p model also can be simplified based on actual condition. The governing equations of u-w-p model are deduced from constitutive law and conservation law under certain assumptions. The numerical solutions are developed by using finite difference method (FDM) and three major factors (pore water pressure, effective vertical stress and shear stress) are outputted from the models as major analysis target. The result shows that both liquefaction and shear failure have low potential to occur in clayey seabed, this may caused by the dense soil structure and low permeability of clay. The pore water pressure vary linearly according to the depth, however, this variation is not significant in clayey seabed (with 6.4% decrease from the surface to bottom). In addition, there is no phase lag in clayey seabed. The excess pore water pressure will not accumulate quickly and reach a massive value inside the clayey seabed.
Journal Title
Conference Title
Proceedings of the International Offshore and Polar Engineering Conference
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
DOI
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2014 ISOPE. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the conference's website for access to the definitive, published version.
Item Access Status
Note
Access the data
Related item(s)
Subject
Civil geotechnical engineering