Parallel biclustering detection using strength Pareto front evolutionary algorithm

No Thumbnail Available
File version
Author(s)
Golchin, Maryam
Liew, Alan Wee Chung
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2017
Size
File type(s)
Location
License
Abstract

Biclustering has become a popular technique to analyse gene expression datasets and extract valuable information by clustering rows and columns of a dataset simultaneously. Using a good merit function together with a suitable local search can lead to the detection of interesting biclusters. In this paper, a multi-objective evolutionary algorithm with local search is proposed to search for multiple biclusters concurrently in a single run of the evolutionary algorithm. We call our method PBD-SPEA2 (Parallel Biclustering Detection using Strength Pareto front Evolutionary Algorithm 2). In our algorithm, a new dynamic encoding scheme is used to encode multiple biclusters in each individual. Our multi-objective function consists of three objectives that simultaneously optimizes the homogeneity of the elements in the bicluster, the size of the bicluster, and the variance of the column in the bicluster with respect to the entire dataset. Crossover is done by selecting and combining the best biclusters among the encoded biclusters from both parents through a strategy of exploration and exploitation. Finally, a sequential selection procedure is used to select the final set of biclusters from individuals that constitute the Pareto front. Experimental results are presented to compare the performance and biological enrichment of detected biclusters with several existing algorithms.

Journal Title

Information Sciences

Conference Title
Book Title
Edition
Volume

415-416

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Mathematical sciences

Engineering

Persistent link to this record
Citation
Collections