Computer vision and machine learning for viticulture technology

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Seng, KP
Ang, LM
Schmidtke, LM
Rogiers, SY
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2018
Size
File type(s)
Location
License
Abstract

This paper gives two contributions to the state-of-the-art for viticulture technology research. First, we present a comprehensive review of computer vision, image processing, and machine learning techniques in viticulture. We summarize the latest developments in vision systems and techniques with examples from various representative studies, including, harvest yield estimation, vineyard management and monitoring, grape disease detection, quality evaluation, and grape phenology. We focus on how computer vision and machine learning techniques can be integrated into current vineyard management and vinification processes to achieve industry relevant outcomes. The second component of the paper presents the new GrapeCS-ML database which consists of images of grape varieties at different stages of development together with the corresponding ground truth data (e.g., pH and Brix) obtained from chemical analysis. One of the objectives of this database is to motivate computer vision and machine learning researchers to develop practical solutions for deployment in smart vineyards. We illustrate the usefulness of the database for a color-based berry detection application for white and red cultivars and give baseline comparisons using various machine learning approaches and color spaces. This paper concludes by highlighting future challenges that need to be addressed prior to successful implementation of this technology in the viticulture industry.

Journal Title

IEEE Access

Conference Title
Book Title
Edition
Volume

6

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Item Access Status
Note
Access the data
Related item(s)
Subject

Engineering

Persistent link to this record
Citation

Seng, KP; Ang, LM; Schmidtke, LM; Rogiers, SY, Computer vision and machine learning for viticulture technology, IEEE Access, 2018, 6, pp. 67494-67510

Collections