Cascade and parallel convolutional recurrent neural networks on EEG-based intention recognition for brain computer interface
File version
Author(s)
Yao, L
Zhang, X
Wang, S
Chen, W
Boots, R
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
New Orleans, USA
License
Abstract
Brain-Computer Interface (BCI) is a system empowering humans to communicate with or control the outside world with exclusively brain intentions. Electroencephalography (EEG) based BCIs are promising solutions due to their convenient and portable instruments. Despite the extensive research of EEG in recent years, it is still challenging to interpret EEG signals effectively due to the massive noises in EEG signals (e.g., low signal-noise ratio and incomplete EEG signals), and difficulties in capturing the inconspicuous relationships between EEG signals and certain brain activities. Most existing works either only consider EEG as chain-like sequences neglecting complex dependencies between adjacent signals or requiring preprocessing such as transforming EEG waves into images. In this paper, we introduce both cascade and parallel convolutional recurrent neural network models for precisely identifying human intended movements and instructions by effectively learning the compositional spatio-temporal representations of raw EEG streams. Extensive experiments on a large scale movement intention EEG dataset (108 subjects, 3,145,160 EEG records) have demonstrated that both models achieve high accuracy near 98.3% and outperform a set of baseline methods and most recent deep learning based EEG recognition models, yielding a significant accuracy increase of 18% in the cross-subject validation scenario. The developed models are further evaluated with a real-world BCI and achieve a recognition accuracy of 93% over five instruction intentions. This suggests the proposed models are able to generalize over different kinds of intentions and BCI systems.
Journal Title
Conference Title
32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
DOI
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Artificial intelligence