Global Features for the Off-Line Signature Verification Problem
File version
Author(s)
Blumenstein, Michael
Leedham, Graham
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Bob Werner
Date
Size
804812 bytes
File type(s)
application/pdf
Location
Barcelona
License
Abstract
Global features based on the boundary of a signature and its projections are described for enhancing the process of automated signature verification. The first global feature is derived from the total 'energy' a writer uses to create their signature. The second feature employs information from the vertical and horizontal projections of a signature, focusing on the proportion of the distance between key strokes in the image, and the height/width of the signature. The combination of these features with the Modified Direction Feature (MDF) and the ratio feature showed promising results for the off-line signature verification problem. When being trained using 12 genuine specimens and 400 random forgeries taken from a publicly available database, the Support Vector Machine (SVM) classifier obtained an average error rate (AER) of 17.25%. The false acceptance rate (FAR) for random forgeries was also kept as low as 0.08%.
Journal Title
Conference Title
Proceedings of the 10th International Conference on Document Analysis annd Recognition
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Item Access Status
Note
Access the data
Related item(s)
Subject
Pattern Recognition and Data Mining
Neural, Evolutionary and Fuzzy Computation