Revisiting the neuropathogenesis of Zellweger syndrome

No Thumbnail Available
File version
Author(s)
Crane, Denis I
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2014
Size
File type(s)
Location
License
Abstract

Zellweger syndrome (ZS) is a neonatal-lethal genetic disease that affects all tissues, and features neuropathology that involves primary developmental defects as well as neurodegeneration. Neuropathological changes include abnormal neuronal migration affecting the cerebral hemispheres, cerebellum and inferior olivary complex, abnormal Purkinje cell arborisation, demyelination and post-developmental neuronal degeneration. ZS is caused by mutations in peroxisome biogenesis, or PEX, genes which lead to defective peroxisome biogenesis and the resultant loss of peroxisomal metabolic function. The molecular and cellular bases of ZS neuropathology are still not completely understood. Attempts to explain the neuropathogenesis have implicated peroxisomal metabolic dysfunction, and more specifically the loss of peroxisomal products, such as plasmalogens and docosahexaenoic, and the accumulation of peroxisomal substrates, such as very-long-chain-fatty acids. In this review, consideration is also given to recent findings that implicate other candidate pathogenetic factors, such as mitochondrial dysfunction, oxidative stress, protein misfolding, aberrant cell signalling, and inflammation - factors that have also been identified as important in the pathogenesis of other neurological diseases.

Journal Title

Neurochemistry International

Conference Title
Book Title
Edition
Volume

69

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Biochemistry and cell biology

Biochemistry and cell biology not elsewhere classified

Medical biochemistry and metabolomics

Neurosciences

Cellular nervous system

Persistent link to this record
Citation
Collections