Mechanisms of PAR-1 mediated kinase receptor transactivation: Smad linker region phosphorylation
File version
Accepted Manuscript (AM)
Author(s)
Ta, Hang
Afroz, Rizwana
Xu, Suowen
Osman, Narin
Little, Peter J
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Protease activated receptors (PARs) transactivate both epidermal growth factor receptors (EGFR) and transforming growth factor (TGF)-β receptors (TGFBR1) in vascular smooth muscle leading to the increased expression of genes (CHST11 and CHSY1) which are rate limiting for the enzymes that mediate hyperelongation of glycosaminoglycan (GAG) chains on the lipid-binding proteoglycan, biglycan. This is an excellent model to investigate mechanisms of transactivation as the processes are biochemically distinct. EGFR transactivation is dependent on the classical matrix metalloprotease (MMP) based triple membrane bypass mechanism and TGFBR1 transactivation is dependent on Rho/ROCK signalling and integrins. We have shown that all kinase receptor signalling is targeted towards phosphorylation of the linker region of the transcription factor, Smad2. We investigated the mechanisms of thrombin mediated kinase receptor transactivation signalling using anti-phospho antibodies and Western blotting and gene expression by RT-PCR. Thrombin stimulation of phospho-Smad2 (Ser 245/250/255) and of phospho-Smad2(Thr220) via EGFR transactivation commences quickly and extends out to at least 4 h whereas transactivation via TGFBR1 is delayed for 120 min but also persists for at least 4 h. Signalling of thrombin stimulated Smad linker region phosphorylation is approximately equally inhibited by the MMP inhibitor, GM6001 and the ROCK inhibitor, Y27632, and similarly expression of CHST11 and CHSY1 is approximately equally inhibited by GM6001 and Y27632. The data establishes Smad linker region phosphorylation as a central target of all transactivation signalling of GAG gene expression and thus an upstream kinase may be a target to prevent all transactivation signalling and its pathophysiological consequences.
Journal Title
Journal of Cell Communication and Signaling
Conference Title
Book Title
Edition
Volume
13
Issue
4
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2019 Springer Netherlands. This is an electronic version of an article published in the Journal of Cell Communication and Signaling, 13, pages 539–548(2019). The Journal of Cell Communication and Signaling is available online at: http://link.springer.com/ with the open URL of your article.
Item Access Status
Note
Access the data
Related item(s)
Subject
Biochemistry and cell biology
Clinical sciences
Oncology and carcinogenesis
Science & Technology
Life Sciences & Biomedicine
Cell Biology
Transactivation signalling
G protein coupled receptors
Persistent link to this record
Citation
Kamato, D; Ta, H; Afroz, R; Xu, S; Osman, N; Little, PJ, Mechanisms of PAR-1 mediated kinase receptor transactivation: Smad linker region phosphorylation, Journal of Cell Communication and Signaling, 2019, 13 (4), pp. 539-548