Experimental study on the progressive collapse behaviour of RC flat plate substructures subjected to corner column removal scenarios

Loading...
Thumbnail Image
File version
Author(s)
Ma, Fuhao
Gilbert, Benoit P
Guan, Hong
Xue, Huizhong
Lu, Xinzheng
Li, Yi
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2019
Size
File type(s)
Location
Abstract

Reinforced concrete (RC) flat plate structures are broadly used in car parks, residential and office buildings due to their economic and architectural advantages. However, this structural system is inherently prone to punching shear failure, which may propagate horizontally and vertically, ultimately leading to the progressive collapse of the entire structure or of a large portion of it. This paper presents the experimental results from two quasi-static large-displacement tests performed on a 1/3 scale, 2 × 2-bay, RC flat plate substructure subjected to corner column removal scenarios. The specimen was tested twice with different corner reinforcement configurations: (i) firstly, one corner column, with torsional strips, was removed and the Uniformly Distributed Load (UDL) on the bay adjacent to the removed column was increased to failure (Test T1), and (ii) secondly, as the damage was concentrated in the vicinity of removed corner column in (i), the corner column diagonally opposite to the first removed one, without torsional strips, was removed. The UDL on the bay adjacent to the second removed column was also increased to failure (Test T2). Different failure and post-failure behaviours, failure modes, and collapse resisting mechanisms between the two tests were witnessed, presented and analysed. Results show that 80% to 110% of the applied load is transferred to the two edge columns adjacent to the removed corner column throughout the entire two tests. The ultimate load carrying capacity for T1 is found to be 1.7 times smaller than the one for T2.

Journal Title

ENGINEERING STRUCTURES

Conference Title
Book Title
Edition
Volume

180

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Civil engineering

Materials engineering

Other engineering

Persistent link to this record
Citation
Collections