Does lower extremity alignment during normal stance predict lower limb kinematics and kinetics during drop landings?

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Sayers, MGL
Buhmann, RL
Collings, TJ
Mellifont, DB
Stuelcken, MC
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2023
Size
File type(s)
Location
Abstract

Background: Static lower extremity alignment (LEA) during normal stance has been used clinically as a tool to determine the presence of known anterior cruciate ligament (ACL) risk factors during dynamic tasks. Previous work investigating the relationship between static LEA during normal stance and risk factors for ACL injury is limited by the use of imprecise methods or because it focuses on knee valgus only and no other potentially important variables. The aim of this investigation was to determine the relationships between static LEA and the corresponding LEA during drop landings. Methods: Forty-one female athletes were recruited for the study (age: 19.8 ± 2.5 years, height: 1.73 ± 0.06 m, mass: 64.03 ± 6.66 kg). Lower limb kinematic data were collected using a 10 camera infrared motion capture system (500 Hz) with retro-reflective markers placed over key anatomical landmarks. This system was linked to two force platforms (1000 Hz) with subsequent three-dimensional kinematic and kinetic data developed using standard software (Visual3D). Following an appropriate warm-up, data collection involved participants standing with their arms partially abducted to record static LEA. This was following by a series of drop landings from a 0.4 m box onto the force platforms. Maximum LEA data during drop landings were then compared with static LEA. Results: Analyses showed that in comparison to static stance, during landings the anterior tilt of the pelvis decreased while hip abduction and knee internal rotation increased. At best, static LEA variables were moderately correlated (r = -0.51 to 0.58) with peak values measured during drop landings. Additionally, regression analysis did not yield any significant predictors of any key peak hip or knee variables measured during drop landings (p = 0.15 to 0.89). Conclusion: When combined, the poor relationships observed between kinematics during static LEA and LEA during drop landings calls into question the practice of using static measures to predict LEA during even simple landing tasks. These findings suggest static assessments of LEA may have minimal value as an ACL injury screening tool.

Journal Title

BMC Sports Science, Medicine and Rehabilitation

Conference Title
Book Title
Edition
Volume

15

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Item Access Status
Note
Access the data
Related item(s)
Subject

Sports medicine

Sports science and exercise

Biomechanics

Persistent link to this record
Citation

Sayers, MGL; Buhmann, RL; Collings, TJ; Mellifont, DB; Stuelcken, MC, Does lower extremity alignment during normal stance predict lower limb kinematics and kinetics during drop landings?, BMC Sports Science, Medicine and Rehabilitation, 2023, 15, pp. 167

Collections