On the hydrodynamics and treatment efficiency of waste stabilisation ponds: From a literature review to a strategic evaluation framework
File version
Accepted Manuscript (AM)
Author(s)
Zhang, Hong
Lemckert, Charles
Roiko, Anne
Stratton, Helen
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Waste stabilisation ponds (WSP) are designed to treat wastewater through natural microbiological, photosynthetic, biochemical, physico-chemical and hydrodynamic processes. They are used throughout the world for wastewater treatment due to their minimal technical requirements, low cost and minimal energy consumption. It is well recognised that WSP hydrodynamics plays a crucial role influencing WSP treatment efficiency. In this study, published WSP literature is reviewed with a focus on the importance of environmental forces, pond configurations and pond loadings on WSP hydrodynamics and pond treatment efficiency. The findings are used to propose future WSP design and modelling requirements. It has been found that the interrelated effects of multiple factors such as pond length-to-width ratio, inlet/outlet configuration, temperature, solar radiation and wind on WSP treatment performance are not investigated sufficiently at present. It is suggested that a system based on numerical pond modelling and field measuring analyses be formulated to address the interacting influences of these factors on WSPs. Consequently, field studies on full-scale WSPs are required to obtain a complete dataset for validation purposes. In this regard, a combination of three-dimensional pond water temperature survey and tracer concentration mapping is suggested. Details of specific modelling components, such as sludge accumulation, turbulence mechanisms and the assumption of constant influent conditions, require further attention. As a result of this review process, a strategic evaluation framework together with the required dataset for the modelling and field work activities are proposed. This paves the way for subsequent studies on WSP hydrodynamics and treatment efficiency, thus benefitting pond design and operation processes.
Journal Title
Journal of Cleaner Production
Conference Title
Book Title
Edition
Volume
183
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited
Item Access Status
Note
Access the data
Related item(s)
Subject
Water resources engineering
Environmental engineering
Manufacturing engineering
Other engineering
Built environment and design
Engineering