Short-term effects of prescribed burning on phosphorus availability in a suburban native forest of subtropical Australia

No Thumbnail Available
File version
Author(s)
Huang, Wenjuan
Xu, Zhihong
Chen, Chengrong
Zhou, Guoyi
Liu, Juxiu
Abdullah, Kadum M
Reverchon, Frederique
Liu, Xian
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2013
Size
File type(s)
Location
License
Abstract

Purpose Prescribed burning can alter nutrient availability to plants. Plant growth in tropical and subtropical forests is frequently phosphorus (P) limited. Soil P availability is influenced by a combination of multiple factors including soil chemical and biological properties. The aims of this study were to investigate the short-term effects of prescribed burning on soil P status and to evaluate the key drivers responsible for the variation in soil P fractions. Materials and methods Soil samples were collected at a depth of 0-10 cm at two sites in a suburban native forest. One site (the burnt site) was burned on 11 August 2011. The other site (the control site) was not burned but served as a reference. Sampling was conducted at four times: before burning, 12 days after burning (T1), 1 week after T1 (T2), and 1 month after T2 (T3). Soil pH, P fractions, microbial biomass carbon (C) and P, and activities of acid and alkaline phosphatase were measured. Results and discussion Total P was relatively low at both sites compared with other subtropical forests. Microbial biomass P accounted for approximately 10 % of soil total P at the two sites, suggesting that the turnover of microbial biomass is critical for soil P availability. Soil properties at the control site remained unchanged over the time. Soil organic forms of P at the burnt site were decreased by the prescribed burning, and the greatest reduction was found in moderately labile organic P (e.g., NaOH-extractable fractions). Soil inorganic forms of P, however, were not correspondingly increased by the prescribed burning. Microbial biomass P was closely related to the shifts in P fractions. These effects were only detected immediately after the fire. Conclusions Microbial biomass could serve as a sink of P in P-impoverished soils and play an important role in soil P transformation. Our results indicate that microbial biomass is an important factor that governs P status after prescribed burning. The rapid recovery of microbial biomass P could be beneficial to the P requirement for plant regrowth after prescribed burning.

Journal Title

Journal of Soils and Sediments

Conference Title
Book Title
Edition
Volume

13

Issue

5

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Earth sciences

Environmental sciences

Soil chemistry and soil carbon sequestration (excl. carbon sequestration science)

Agricultural, veterinary and food sciences

Persistent link to this record
Citation
Collections