On small beams with large topological charge

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Krenn, Mario
Tischler, Nora
Zeilinger, Anton
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2016
Size
File type(s)
Location
Abstract

Light beams can carry a discrete, in principle unbounded amount of angular momentum. Examples of such beams, the Laguerre–Gauss modes, are frequently expressed as solutions of the paraxial wave equation. The paraxial wave equation is a small-angle approximation of the Helmholtz equation, and is commonly used in beam optics. There, the Laguerre–Gauss modes have well-defined orbital angular momentum (OAM). The paraxial solutions predict that beams with large OAM could be used to resolve arbitrarily small distances—a dubious situation. Here we show how to solve that situation by calculating the properties of beams free from the paraxial approximation. We find the surprising result that indeed one can resolve smaller distances with larger OAM, although with decreased visibility. If the visibility is kept constant (for instance at the Rayleigh criterion, the limit where two points are reasonably distinguishable), larger OAM does not provide an advantage. The drop in visibility is due to a field in the direction of propagation, which is neglected within the paraxial limit. Our findings have implications for imaging techniques and raise questions on the difference between photonic and matter waves, which we briefly discuss in the conclusion.

Journal Title

New Journal of Physics

Conference Title
Book Title
Edition
Volume

18

Issue

3

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) License (https://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Physical sciences

Quantum physics not elsewhere classified

Persistent link to this record
Citation
Collections