SSRBC 2016: Sclera Segmentation and Recognition Benchmarking Competition

No Thumbnail Available
File version
Author(s)
Das, Abhijit
Pal, Umapada
Ferrer Ballester, Miguel Angel
Blumenstein, Michael
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)

J. Fierrez, S. Z. Li, A. Ross, R. Veldhuis, F. Alonso-Fernandez, J. Bigun

Date
2016
Size
File type(s)
Location

Halmstad, Sweden

License
Abstract

Abstract: This article reports and summarizes the results of a competition on sclera segmentation and recognition benchmarking, called Sclera Segmentation and Recognition Benchmarking Competition 2016 (SSRBC 2016). It was organized in the context of the 9th IAPR International Conference on Biometrics (ICB 2016). The goal of this competition was to record the recent developments in sclera segmentation and recognition, and also to gain the attention of researchers on this subject of biometrics. In this regard, we have used a multi-angle sclera dataset (MASD version 1). It is comprised of 2624 images taken from both the eyes of 82 identities. Therefore, it consists of images of 164 (82*2) different eyes. We have prepared a manual segmentation mask of these images to create the baseline for both tasks. We have, furthermore, adopted precision and recall based statistical measures to evaluate the effectiveness of the segmentation and the ranks of the competing algorithms. The recognition accuracy measure has been employed to measure the recognition task. To summarize, twelve participants registered for the competition, and among them, three participants submitted their algorithms/ systems for the segmentation task and two their recognition algorithm. The results produced by these algorithms reflect developments in the literature of sclera segmentation and recognition, employing cutting edge segmentation techniques. Along with the algorithms of three competing teams and their results, the MASD version 1 dataset will also be freely available for research purposes from the organizer's website. The competition also demonstrates the recent interests of researchers from academia as well as industry on this subject of biometrics.

Journal Title
Conference Title

2016 International Conference on Biometrics (ICB): Proceedings

Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Artificial intelligence not elsewhere classified

Persistent link to this record
Citation