Heterologous Immunity in the Absence of Variant-Specific Antibodies after Exposure to Subpatent Infection with Blood-Stage Malaria
File version
Author(s)
Kuns, Rachel D.
Good, Michael F.
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
We examined immunity induced by subpatent blood-stage malaria (undetectable by microscopy) using the rodent malaria parasite, Plasmodium chabaudi chabaudi, postulating that limited infection may allow expansion of antigen-specific T cells that are normally deleted by apoptosis. After three infections drug cured at 48 h, mice were protected against high-dose challenge with homologous or heterologous parasites (different strain or variant). Immunity differed from that generated by three untreated, patent infections. Subpatently infected mice lacked immunoglobulin G (IgG) to variant surface antigens, despite producing similar titers of total malaria-specific IgG to those produced by patently infected mice, including antibodies specific for merozoite surface antigens conserved between heterologous strains. Antigen-specific proliferation of splenocytes harvested prechallenge was significantly higher in subpatently infected mice than in patently infected or naive mice. In subpatently infected mice, lymphoproliferation was similar in response to homologous and heterologous parasites, suggesting that antigenic targets of cell-mediated immunity were conserved. A Th1 cytokine response was evident during challenge. Apoptosis of CD4 and CD8 splenic lymphocytes occurred during patent but not subpatent infection, suggesting a reason for the relative prominence of cell-mediated immunity after subpatent infection. In conclusion, subpatent infection with blood stage malaria parasites induced protective immunity, which differed from that induced by patent infection and targeted conserved antigens. These findings suggest that alternative vaccine strategies based on delivery of multiple parasite antigens at low dose may induce effective immunity targeting conserved determinants.
Journal Title
Infection and Immunity
Conference Title
Book Title
Edition
Volume
73
Issue
4
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Biological sciences
Agricultural, veterinary and food sciences
Biomedical and clinical sciences
Clinical sciences not elsewhere classified
Microbiology
Immunology
Medical microbiology