Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes
File version
Author(s)
Jin, Shirong
Chen, Yujie
McKendry, Jonathan
Massoubre, David
M. Watson, Ian.
Gu, Erdan
D. Dawson, Martin
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
We have systematically investigated the impact of device size scaling on the light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes(LEDs). Devices with diameters in the range 20-300 孠have been studied. It is shown that smaller LED pixels can deliver higher power densities (despite the lower absolute output powers) and sustain higher current densities. Investigations of the electroluminescencecharacteristics of differently sized pixels against current density reveal that the spectral shift is dominated by blueshift at the low current density level and then by redshift at the high current density level, owing to the competition between the bandgap shrinkage caused by self-heating and band-filling effects. The redshift of the emission wavelength with increasing current density is much faster and larger for the bigger pixels, suggesting that the self-heating effect is also size dependent. This is further confirmed by the junction-temperature rise measured by the established spectral shift method. It is shown that the junction-temperature rise in smaller pixels is slower, which in turn explains why the smaller redshift of the emission wavelength with current density is present in smaller pixels. The measured size-dependent junction temperature is in reasonable agreement with finite element method simulation results.
Journal Title
Journal of Applied Physics
Conference Title
Book Title
Edition
Volume
107
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Photonics, Optoelectronics and Optical Communications
Mathematical Sciences
Physical Sciences
Engineering