Environmentally-benign, Porous and Conductive Carbon Materials for Lithium-Sulphur Batteries

Loading...
Thumbnail Image
File version
Author(s)
Primary Supervisor

Zhang, Shanqing

Other Supervisors

Gray, Evan

Lai, Chao

Hou, Yanglong

Editor(s)
Date
2017
Size
File type(s)
Location
License
Abstract

Materials engineering and nano-manipulation play a key role in the development of advanced Lithium-Sulphur (Li–S) batteries in terms of energy and power density (both gravimetric and volumetric), cycling stability, rate capability, safety and the cost of production. In this thesis, two strategies are used to address the demands, i.e. fabrication of low cost, environmentally benign and conductive carbon-sulphur (C−S) nanostructured cathodes, and the use of interlayers as a novel battery configuration in Li–S battery systems. In the first strategy, inexpensive, scalable, environmentally-friendly and commercial bamboo biochar was activated via a KOH/annealing process to create an abundant microporous structure. This was then used to encapsulate sulphur to prepare a microporous bamboo carbon–sulphur (BC-S) nanocomposite as the cathode for Li–S batteries. The bamboo carbon micropores can encapsulate sulphur and polysulphides to reduce the shuttle phenomenon during cycling while simultaneously maintaining electrical contact between the sulphur and the conductive carbon framework during the charge/discharge process. The treated BC-S (T_BC-S) nanocomposite with 50 wt% sulphur content delivers a high initial capacity of 1295 mA·h·g−1 at a low discharge rate of 160 mA·g−1 and high capacity retention of 550 mA·h·g−1 after 150 cycles at a high discharge rate of 800 mA·g−1 with excellent coulombic efficiency (≥ 95%).

Journal Title
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type

Thesis (PhD Doctorate)

Degree Program

Doctor of Philosophy (PhD)

School

Griffith School of Environment

Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

The author owns the copyright in this thesis, unless stated otherwise.

Item Access Status
Note
Access the data
Related item(s)
Subject

Lithium-sulphur batteries

Materials engineering

Nanostructured cathodes

Bamboo carbon micropores

Persistent link to this record
Citation